Smooth approximations to solutions of nonconvex fully nonlinear elliptic equations
نویسندگان
چکیده
We show that fully nonlinear elliptic PDEs (which may not have classical solutions) can be approximated with integro-differential equations which have C solutions. For these approximated equation we prove a uniform C estimate. We also study the rate of convergence.
منابع مشابه
Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations
We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...
متن کاملParabolic Finite Element Equations in Nonconvex Polygonal Domains
Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial boundary value problem for the heat equation with homogeneous Dirichlet boundary conditions and semidiscrete and fully discrete approximations of its solution by piecewise linear finite elements in space. The purpose of this paper is to show that known results for the stationary, elliptic, case may be carried over ...
متن کاملDuality Principles for Fully Non- linear Elliptic Equations
In this paper we use duality theory to associate certain measures to fully-nonlinear elliptic equations. These measures are the natural extension of the Mather measures to controlled stochastic processes and associated second-order elliptic equations. We apply these ideas to prove new a-priori estimates for smooth solutions of fully nonlinear elliptic equations. Supported in part by FCT/POCTI/F...
متن کاملLorentz Estimates for Asymptotically Regular Fully Nonlinear Elliptic Equations
We prove a global Lorentz estimate of the Hessian of strong solutions to a class of asymptotically regular fully nonlinear elliptic equations over a C1,1 smooth bounded domain. Here, the approach of the main proof is based on the Possion’s transform from an asymptotically regular elliptic equation to the regular one.
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کامل